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Improved Design of Multihole Directional
Couplers Using an Iterative Technique

ROBERT S. ELLIOTT, LIFE FELLOW, IEEE, AND YONG UK KIM, MEMBER, IEEE

Abstract —The widely used first-order polynomial representation of the
frequency response of a multihole directional coupler is assumed. The
roots of this polynomial are displaced iteratively until a desired response is
achieved. One possible outcome is a Chebyshev response, but the method
is capable of improving on that result if all portions of the passband are not
equally important. Furthér improvement can be achieved if the directivity
is made to ripple around a somewhat higher level. This causes a minor
sacrifice in bandwidth. Examples are given.

1. INTRODUCTION

HE FAR-FIELD pattern of an equispaced linear an-
tenna array can be represented by the polynomial

Sy = T apr= T w=m) ()

o=

in which I, is the relative current in the nth element
(Iy=1) and w =exp(j¥), with ¢ = (2ad /A)cos 8, where
d is the element spacing, A the wavelength, and @ the
pointing direction. In 1946 Dolph [1] showed how (1)
could be mated to a Chebyshev polynomial with the result
that the pattern consisted of a main beam symmetrically
surrounded by side lobes of an equal prescribed height.
Dolph also demonstrated that the beam width of the main
lobe was the minimum achievable.

Other workers soon realized that Dolph’s technique
could also be applied to the design of multisection trans-
formers, since their frequency response (to first order) can
be represented by a polynomial similar to (1) above, with
f(w) becoming the normalized reflection coefficient p and
with ¢ = —28I, where B/ is the electrical length of each
transformer section. Collin [2] and Cohn {3] independently
demonstrated the Chebyshev design of transformers in
1955.

Subsequently Levy [4] provided an analysis and synthe-
sis procedure for multiaperture directional couplers. Once
again, the frequency response, to first order, could be
linked to a polynomial of the type shown in (1) above,
with f(w) functionally related to the directivity of the
coupler. Dolph’s technique could thus also be used in the
design of an array of equispaced holes that couple two
identical waveguiding structures.
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Although the Chebyshev design is optimum in the sense
of providing maximum bandwidth for a specified lower
bound to the directivity of the coupler in the passband, it
is not optimum unless all portions of the passband are
equally important. The technique to be described in what
follows addresses that problem.

Further, a Chebyshev design provides a directivity-
versus-frequency response for a lossless directional cou-
pler, consisting of N +1 equispaced holes, that exhibits N
poles (frequencies at which the directivity is infinite) inter-
spersed by N —1 lobes of common height D, It is
possible, for example, to raise D, to a higher value D/,
by dropping the poles down to a value slightly above D7, ,
thus causing the response to ripple, without seriously af-
fecting the bandwidth. This rippled response has the inter-
esting feature that it can be achieved with more than one
distribution of hole sizes, thereby permitting the designer
to choose that solution which is easiest to realize physi-
cally. The iterative technique which follows demonstrates
how such rippled responses can be achieved.

II. BACKGROUND

Consider the four-port directional coupler suggested by
Fig. 1. It consists of two identical waveguiding structures
sharing a common wall in which N +1 equispaced holes
have been cut. With a unit signal injected at port 1, to first
order the output signals at the four ports are

N
ports 1 and 4: ) b,e /2"F4
n=0

(2)
port 2:

: N
1+ ) cn}e_ﬂvﬂd (3)
. n=10

port 3: (4)

"N

~JNBd
Y ¢, e
n=0

The signals at ports 1 and 4 are phase referenced to the
zeroth hole; those at ports 2 and 3 are phase referenced to
the Nth hole. The phase constant of the propagating mode
is B and the interhole spacing is d. The forward and
backward scattering coefficients for the nth hole are re-
spectively ¢, and b,.
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Fig. 1. A multihole directional coupler.

The coupling coefficient C is defined by the expression

in 1
1
C= 1010glom = 2010g10-——7v—— (5)
’ 2 <
n=0
and the directivity D by
N
cn
Psout n§0
D =1010g10W = 2010g10 N (6)
4 Z bne—jZan
n=20

We shall assume that either 1) the holes scatter symmetri-
cally (example: they are in the common narrow wall be-
tween two identical rectangular waveguides), or 2) the
holes scatter asymmetrically (examples: they are on the
center line of the common broadwall between two identi-
cal rectangular waveguides or in the common ground plane
between two identical striplines or microstrips). Thus b, =

¢, or b, = —¢,, and in either case
N
>
=0
D =20logyo 7 . (7)
Z c e—]Zan
n
n=0

In what follows we shall assume that over the frequency
band of interest ¢, is frequency independent and proceed
to consider the following design problem: Given a desired
level of coupling C, how does one keep the directivity D
above a value D, throughout the frequency band of
interest?

It can be noted from (5) that, with C specified, |Xc,]| is
known and therefore, from (7), that keeping D above D,
is equivalent to keeping |Xc,exp(— j2nBd)| below a re-
lated maximum value. Therefore let us employ the substi-
tutions

y=-2pd (8)

(9)

and introduce the function

N
g(Bd) = 3 c,e™?d (10)
n=0
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so that

g(¥) = X ce™ (11)
n=0

N N N
g(W)= chwnchZ (cn/CN)wn=cN Hl(W‘—Wn).
[0} n=90

- (12)

n=

In terms of the variable w we see from (7) that

B 1g(1)]
D= 2010g10m (13)
whereas from (5) and (12)
N
lg(D]=lew Z (cn/cn) =107, (14)
n=0

A formula for |g| ., in the passband can be deduced from
(13) and (14), viz.,

|8 max = 18(1)]-107 Pre/20, (15)
Given C, (14) can be used to find |g(1)| and then, given
D, (15) can be used to establish |g]|,,..-

The design problem can now be viewed in the following
light: Given (12) one needs to find the roots w, so that
|g(W)| < |g|max In the desired band of frequencies. An
iterative technique capable of finding the root positions for
a wide variety of useful D(B/) responses will be developed
in the next two sections of this paper.

III. ANALYSIS
From (12) it follows that

8 fexP = T (w=w)(w=m)*%.  (16)

Let the position of the nth root be denoted by
w, = efn +.]bn‘

The insertion of (9) and (17) in (16) yields

(17)

N
(8() /exl’= 11 [1-2e%cos (¢ —b,) +e*] (18)

with ¢ playing the role of surrogate for the frequency »
because of (8) and the fact that 8 is a function of ».

" We shall need to distinguish two cases: a) N=2M is an
even number; b) N=2M +1 is an odd number. Because
of the physical requirement that all the coupling coeffi-
cients ¢, have a common phase, the roots w, must occur in
complex conjugate pairs or be single roots on the real axis.
Thus for N =2 M (18) becomes

M
|g(9) /ey’ = T [1—2e%cos(y — b,) + 2]

n=1
J1-2e%cos(y +b,)+ e (19)
whereas, for N=2M 41, (18) adopts the form

18(%) /en|’ = (1+2e% cos ¢ + e240)
M
- T [1-2e%cos (¢ — b,) + 2]

[1-2e%cos (¢ +b,) + e2].  (20)
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f !
(@ (b)

Fig. 2. Root indexing for odd and even numbers of holes. (a) N +1=
2M+1.(b) N+1=2M+2.

In (20) the single root has been placed on the negative real
axis by making b, = . The reason for this placement will
become apparent shortly.

Possible root distributions for these two cases are shown
in the w plane plots of Fig. 2. The unit circle w = e/¥ is
displayed in both panels and some of the roots are placed
on the unit circle, others being displaced radially inward or
outward.

As the frequency changes and Sd ranges from 0 to =,
varies from 0 to —27 and w makes one complete excur-
sion clockwise around the unit circle. For 8d > 7 the
pattern of response begins to repeat so only the range
0 < Bd <7 need be considered. If all the roots w, are
placed on the unit circle, as w makes its excursion, when-
ever w coincides with a root, one of the factors in (12) is
zero and the directivity becomes infinite. When w is ap-
proximately halfway between successive roots there is a
minimum in the directivity. However, if some of the roots
are off the unit circle, when w passes by such a root there
is a finite peak in the directivity rather than a pole. Proper
root placement can be seen to provide a variety of useful
responses.

When doing analysis one assumes a set of root positions.
As examples, if all the roots are placed at —1+ jO a
maximally flat response for D(») results, whereas if the
roots are equispaced an amount 27 /(N + 1) along the unit
circle, with a root missing at 1+ jO, all the coupling
coefficients ¢, are the same.

But in what follows we shall be interested in synthesis,
where the desired response D(») is specified and the
problem is to find the optimum placement of the roots w,.

IV. DESIGN PROCEDURE

From (13) and (20) one can perceive that, for N=2M +
1, i.e., for 2M +2 holes,

D(¢) =K~ {10 )y 1Oglo[1 2e "COS(\P b )+e2“"]

n=1

+10 Z 10go[1—2e% cos (¥ + b,) + e2%]
n=1

+1Olog10[1+2e“000s¢+e2“°]} (21)

-the changes 684,
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with K; =20log 14|g(0°)/cy|. For N=2M one need only
delete the ultimate term on the right side of (21).

When N, K, and a set of starting values a,, b, are
given, D(y) becomes a known function and can be com-
pared to a specified function S(¢). If one forms the
difference function

D(ay, ay,-- by Ky ) —S(y) (22)
and holds ¢ fixed at some value v, while permitting the
a,’s and b,’s to change slightly (K; must also change
slightly to maintain D =0 at ¢ = 0), the total differential
is

"aMﬂbl’bzf ..

M

8(D-S8)= )

S Ban

8a+z

ab,, +8K,.

(23)

The partial derivatives appearing in (23) can be deduced
analytically from (21) and evaluated at the point

’ bM » K 1 libm) .

The left side of (23) should be the negative of the
difference, at i, between what is given and what is
desired, both known quantities, since one wishes to find
6b,, and 6K, that will eliminate this
difference. One needs to select ,, carefully. For a case in
which all the roots w, are to be on the unit circle, the
angles at which the peaks of the M +1 lobes in the D
function occur in — 7 < ¢ < 0 should be chosen. If 2P or
2P +1 roots are to be off the unit circle, the angles at
which the P or P+1 dips in the D function occur in
— 7 < ¢ <0 should also be chosen. These sets comprise
the y,, values at which one has all the relevant informa-
tion about D — S.

When each of the {,, values just enumerated is used
successively in (23), one obtains a deterministic set of
simultaneous linear equations. Matrix inversion yields val:
ues for 8a,, 8b,, and 8K,;. A new D function can be
created by inserting the replacements a, + 8a,, a,+ da,,
b,+ db,, and K+ 8K, in (21). This new D function can
be compared to S(y) and if the agreement is not yet
satisfactory the entire procedure can be repeated. Experi-
ence has shown in a variety of practical examples that
normally only a few iterations are needed and that the
choice of starting parameters in not critical.

With D(y) satisfactorily close to S(3') one can use the
final root positions w, to expand the product of factors
(w —w,), thereby creating the polynomial whose coeffi-
cients are c,/cy. (cf. (12)). Then (14) can be used to
determine c,. With all the coupling coefficients known,
the relation between coupling coefficient and hole size
(obtained either experimentally or theoretically for the
specific application) can be utilized to complete the design.

, b,

Pm(a09a1"">aM’b1,b2,"'

V.

A Chebyshev response can be obtained readily using the
procedure just described. For example, suppose one wishes
to design a seven-hole coupler with C =15 dB and D, =
30 dB. One can start with all six roots on the unit circle,

ILLUSTRATIONS OF THE IDESIGN PROCEDURE
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Fig. 3. Starting D(y) function for seven-hole directional coupler
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Fig. 4. Chebyshev response for seven-hole directional coupler. D, =
30 dB.

spaced 27/7 radians apart, but with a root missing at
w=1+ jO. This gives equal scattering coefficients ¢, (all
holes the same size) and, with 4,=0 for all n, (21)
becomes in this case

D(y)=K,-10 23: {10g10[2_2 COS(\P_bn)]

n=1

+log[2—2cos (¥ +b,)]}  (24)

with b, =67/7, b,=4x/7, and by =2x/7. Since D(0°) =
0, one finds from (24) that K; = —16.90 dB. A plot of this
starting D(y) function is shown in Fig. 3. The inverted
lobes which appear in this figure have minima which occur
at ¢ =0° —74.08°, -—127.42°, —180°, —232.58°,
—285.92°, and — 360°. We find. using (24), that D(0°) =0,
D(—74.08°) = 12.65, D(—127.42°) =15.98, and
D(—180°)=16.90 dB; the response is mirror symmetric
around = —180°. What is desired is that these inverted
lobe minima all be at 30 dB.

Since all the roots are to remain on the unit circle, (23)
simplifies for this case to involve just four unknowns: 8b,,
8b,, 8b,, and 8K,. Evaluation of dD/db, at the ¢ values
0°, —74.08°, —127.42°, and —180° permits construction
of a 4 by 4 matrix, and inversion yields values for the
unknowns and a new starting function D(i). Two itera-
tions bring all lobe minima within 0.1 dB of the specified
value D_; = 30 dB, at which stage b; = 2.81, b, =1.96, and
b, =1.39. When these values are placed in (21), calcula-
tions produce Fig. 4, which is seen to give the desired
Chebyshev response. With the roots w, known, multiplica-
tion of the factors (w —w,) in (12) permits identification
of the relative scattering coefficients c,/cg, after which
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TABLE 1
MAGNITUDES OF THE SCATTERING COEFFICIENTS FOR A SEVEN-HOLE
DiIReCTIONAL COUPLER CHEBYSHEV DESIGN (FIG. 4) AND MODIFIED
CHEBYSHEV DESIGN (FIG. 5)

n 0 1 2 3 4 5 6

lcn| for Figure 4 .0106 .0229 | .0352 |.0403 | .0352 |.0229 |.0106

|cn| for Figure 5 0101 .0232 | .0351 .0410 § .0351 .0232 | .0101

50
30+
dB
20+
10
0 r
4 -2

(o]

m

Fig. 5. Modified Chebyshev response for seven-hole directional coupler.

(14) yields the value of |cg|. Table I lists the magnitudes of
all seven scattering coefficients for this case.

Of course, this design could have been achieved by
conventional means {4]. However, consider the situation in
which the central portion of the frequency band of the
directional coupler is more important. Suppose, for exam-
ple, that the response in Fig. 4 is to be modified so that the
central inverted lobe reaches down only to 35 dB. Once
again, Fig. 3 can be used as the starting D(y) function!
and the procedure just described can be followed, the only
difference being that S(—180°) = 35 dB instead of 30 dB.
One finds that two iterations bring all lobe minima within
0.1 dB of specification. The final root positions are b, =
272, b,=1.94, and b,=1.37. With these values known,
(12) and (14) can once again be used to deduce the
magnitudes of the scattering coefficients. Their values are
entered in Table I. By comparing these entries with those
for the Chebyshev 30 dB design, one can see that the
physical realizability appears to be no more difficult. How-
ever, precise fabrication is needed to differentiate the two
designs. The type of response shown in Fig. 5, where the
lobe minima are not all the same, cannot be achieved by
the conventional Chebyshev procedure.

A more important application of this iterative technique
involves moving roots off the unit circle. Consider, for
example, the case of a six-hole directional coupler designed
so that the directivity ripples +1 dB around D,, =34 dB.
This ensures that D_; = 33 dB, which is 3 dB better than
the 30 dB Chebyshev design shown in Fig. 6. That design
was achieved using the iterative technique in exactly the
manner that produced Fig. 4 and gives the root positions
by=a, b;=225, and b,=1.60 rad. We can create a
starting pattern by arbitrarily choosing a4 =a;=a, = 0.1,

10ne could use Fig. 4 as the starting D(y) if it had already been
constructed.
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Fig. 7. Starting D(¢) function for six-hole directional coupler.
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Fig. 8. Final rippled response for six-hole directional coupler.

which results, using (21), in the response shown in Fig. 7.
For this example, the increments 8a, da,. 8a,, 8b;, 8b,,
and 8K; need to be found from (23), using as driving
function the values of 8(D — §) deduced from the ripple
specification and the values of D at the three peaks and
three dips in the right half of Fig. 7.

Five iterations yield the response shown in Fig. 8, with
all ripple maxima and minima within 0.1 dB of what was
specified. The final root positions are w, = exp (0.282+ j7),
w; = w*, =exp(0.247+ j2.35), and w,=w?*,=exp(0.108
+ j1.77). )

With the root positions known, (12) and (14) can be
used to deduce the coupling coefficients. However, a study
of (21) reveals that if g, is replaced by —a,, or a; by
— ay, or a, by — a,, the same D(y) response occurs, the
only difference being the value of K;. More generally, if
N =2M there are 2™ sets of roots that will produce the
same response; if N=2M +1 there are 2¥*1 sets. Each of
these sets gives a different solution for the scattering
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TABLE 1I
MAGNITUDES OF THE SCATTERING COEFFICIENTS FOR THE SIX-HOLE
DIRECTIONAL COUPLER WITH RIPPLED RESPONSE (FIG. 8)

n 0 1 2 3 4 5
Sojution ¢, | .0079 | .0277 | .0474 |.0489 |.0320 |.0139
Solution c 0105 | .0302 | .0%61 |.0498 |.0307 |.0105
No. 2 n
5°J00f130" c, | -0085 | .0256 | .0359 |.04%0 |.0364 |.0131
5%{“:“ ‘ c, | -0064 | .0229 | .0827 |.0503 |.0382 |.0173

coefficients, and one is free to pick that solution which is
easiest to realize physically. Further study shows that these
solutions occur in pairs that are mirror symmetric versions
of each other. In the present application there are thus
four distinct sets of scattering characteristics to consider.
With C =15 dB these solutions are listed in Table II.

One can observe from the entries in this table that all
four solutions lead to sets of hole sizes which lack symme-
try, unlike the cases cataloged in Table 1. One should
choose the set with the least variation in nearest neighbors,
since the first-order theory being used here is best justified
when that occurs. Solution no. 2 seems best under that
criterion but all four solutions are physically realizable.

By comparing the bandwidth exhibited in Figs. 6 and 8
one can determine the price paid for raising D, and
choosing a rippled response instead of one containing
poles. In this case there was an iraprovement in D_, of 3
dB coupled with a 14% decrease in bandwidth. The itera-
tive procedure can demonstrate larger improvements in
D, ;. and/or decreases in the ripple magnitude, but at the
cost of a lessened bandwidth. Trade-offs can be studied
easily by inputting a variety of specifications to the com-
puter program.

VL

A rapidly converging iterative technique has been
demonstrated which will provide the design of multihole
directional couplers when the directivity versus frequency
is to be a modification of Chebyshev (all inverted lobes in
the passband not at the same height). A rippled response
can be also achieved where D, is higher than Chebyshev
at a modest reduction in bandwidth. The solutions are
physically reglizable.

CONCLUSIONS
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